臨時地震観測への IoTキャラバンシステム適用の検討

東北大学 理学研究科 地震・噴火予知研究観測センター 内田直希

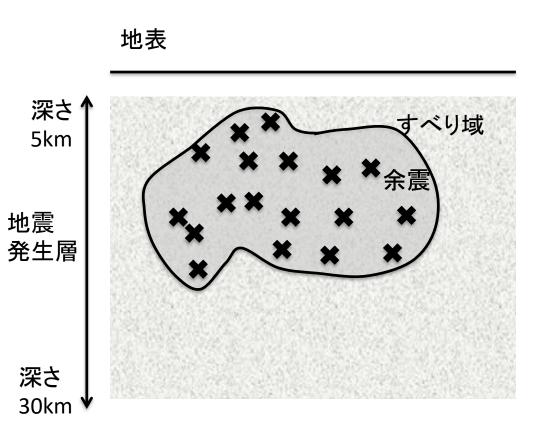
IoTキャラバンシステム テストベッド

- IoT環境が構築できる可搬型システム一式 のテストベッド
 - 多様なセンサデバイス
 - 通信デバイス (WiFi/ LPWA / LTE / 衛星)
 - 可搬式サーバ・エッジノード
 - 非常用電源・大容量バッテリ
- ・ 利用期限は最大でも3か月
 - 年に3か所(移設に1か月)をキャラバンして利用
 - 移設(設置・撤去)の訓練も兼ねられる
- 災害時には、災害対応データ収集ステーションとして活用
 - 通常時と災害時のデュアルユースを前提
 - 複数セット稼働させることによって、ロバストに運用可能

キャラバンテストベッドの特徴

IoT環境が簡単に構築できる可搬型システム

- ・臨時で素早く立ちあがるテストベッド。
 - 防災訓練•災害時情報共有
 - 大地震後の臨時地震観測



- ・地域IoT実装を推進するために必要なもの (通信基盤、情報基盤)を手軽に利用できるテストベッド。
 - 観光・農業・教育・地域ビジネス等地域課題 への適用

総務省 地域IoT実装推進ロードマップ

広域即時展開型地震観測システムの必要性 (臨時余震観測)

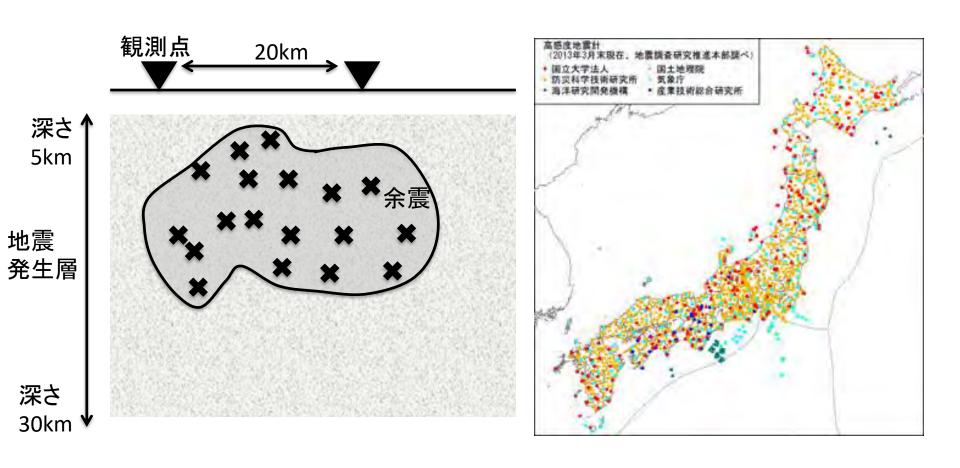
① 余震分布

↓

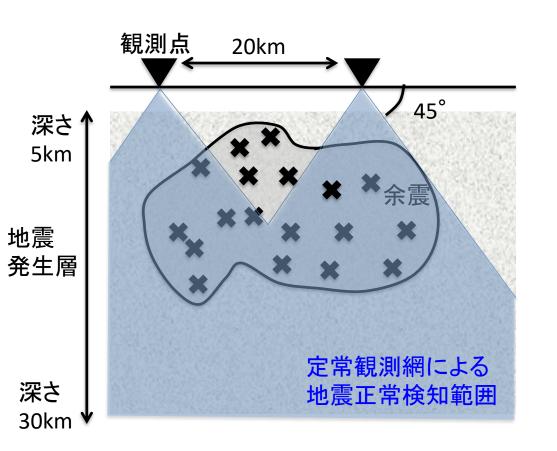
地下の断層形状・破壊域・
未破壊域の把握

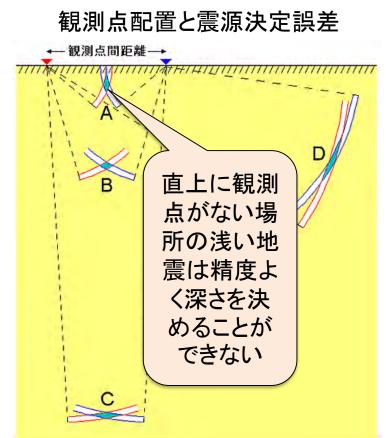
② 余震位置·走時

↓

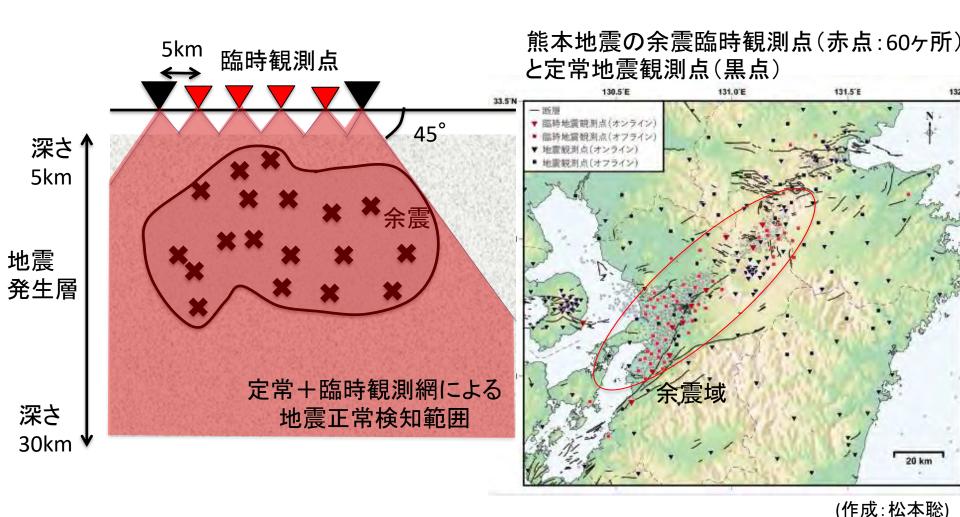

地下構造(速度·減衰)

③ 微小余震活動

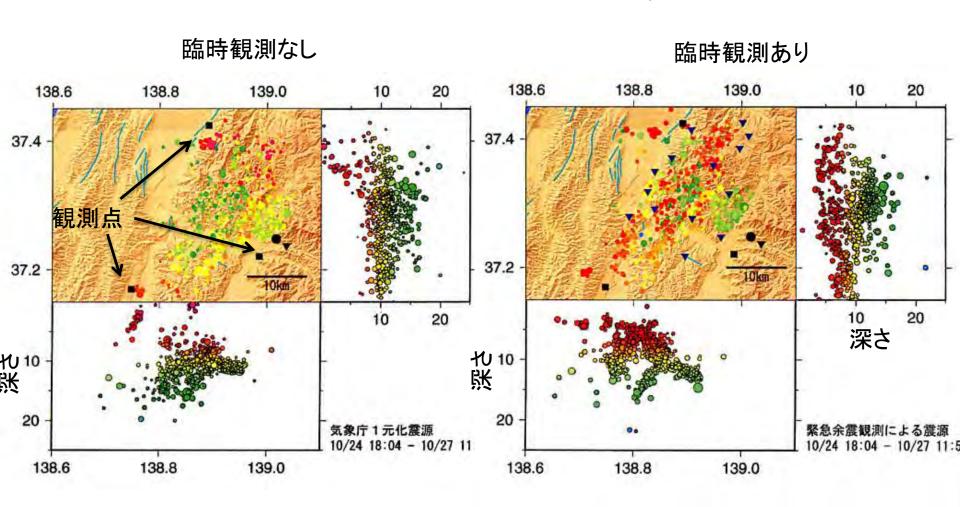

↓


地震後変動
・今後の地震活動予測

広域即時展開型地震観測システムの必要性 (現在の定常地震観測網)



広域即時展開型地震観測システムの必要性 (現在の定常地震観測網)



広域即時展開型地震観測システムの必要性 (臨時観測点の効果)

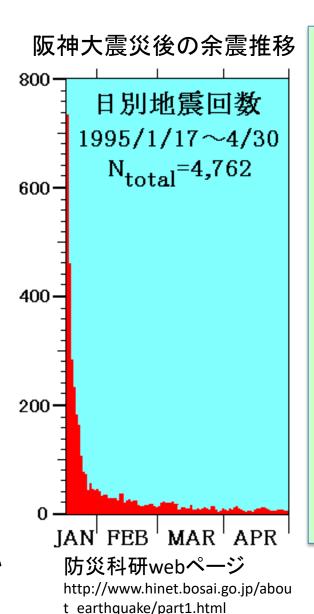
臨時余震観測の効果(余震分布)

新潟県中越地震(2004年, M5.9)の場合

[東京大学地震研究所作成]

2007年以降の合同余震観測

(災害の軽減に貢献するための地震火山 観測研究計画・科研費特別研究促進費)


年	地震名	マグニ チュード	観測点 数	参加機関	人的被害	備考
2007	能登半島地 震	M6.9	79	東京大学,北海道大学,東北大学,名古屋大学,金沢大学,京都大学防災研究所,九州大学,鹿州産業技術	死 1, 負	
2007	新潟県中越 沖地震	M6.7	47	東京大学学、ターニー・これらのほと	تارک	
2008	岩手•宮城内 陸地震	M7.2	124	東北大学 学、名古 州大学、「		
2011	東北地方太 平洋沖地震	M9.0	-	東京大学 学·千葉大 大学·九州大 , , , , , , , , , , , , , , , , , , ,	負 6,230	
2014	長野県北部 地震	M6.7	17	東京大学・北海道大学・九州大学・東北大学	負 46	前震段階 で4観測点 設置
2016	鳥取県中部 地震	M6.6	69	京都大学・九州大学・東京大学	負 31	
2016	熊本地震	M7.0	60	九州大学、北海道大学、弘前大学、東北大学、東京大学、名古屋大学、京都大学、鹿 <u>児島大学</u>	死 228, 負 2,753	

なぜオンライン観測ができないか?

- 時間がない
- 電源がない
- ・ネットワークがない

地震計は人工ノイズに弱い

通常の地震観測点設置手順

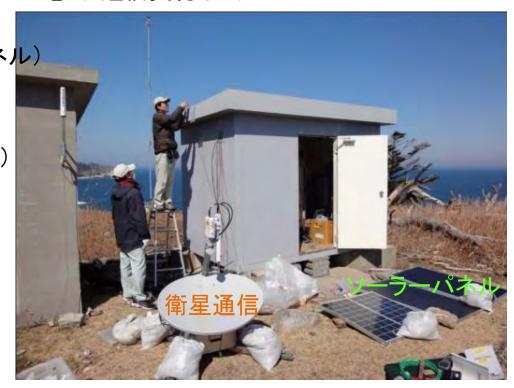
- 土地契約
- 建柱
- 電気・通信 引き込み工事
- 電気契約
- NTT契約
- 機器設置調整
- データ送出

最短 でも 2ヶ月

※そもそも被災地では 復旧が優先

現在の対応例1(衛星通信)

• 時間がない(建柱なし、土地・電気・通信契約なし)


• 電源がない(ソーラーパネル)

・ネットワークがない

(衛星通信)

ただし・・・

設置が大掛かりで大変 消費電力大きい(~30W) 各大学常備は2台程度

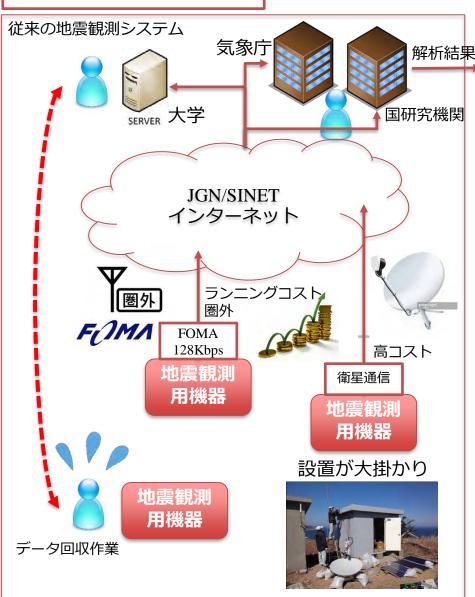


3.11後の金華山観測点(離島)での地震データ 衛星通信システム(VSAT)の設置例

現在の対応例2(携帯網)

- 時間がない (建柱なし、土地・電気・通信契約なし)
- ・ 電源がない (ソーラーパネル)
- ネットワークがない(携帯網)

ただし・・ 未カバー域広い 例:岩手県釜石市付近に計画中の



熊本地震でのオンライン余震観測


現状まとめ

様々な箇所の地震観測データを定期的にサーバに収集し解析に用いている

専門家による精査

地震調査委員会 地震予知連絡会 火山噴火予知連絡会

国民

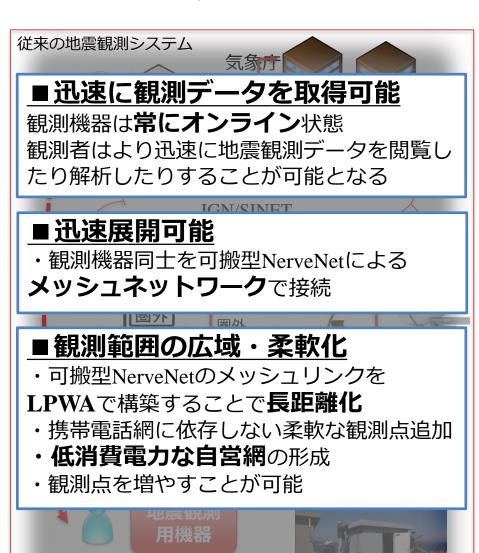
■従来のスタンドアロンな観測システム

安上がりかつ即時展開に向くが 定期的に**現地まで赴き**データを回収する必要 がある

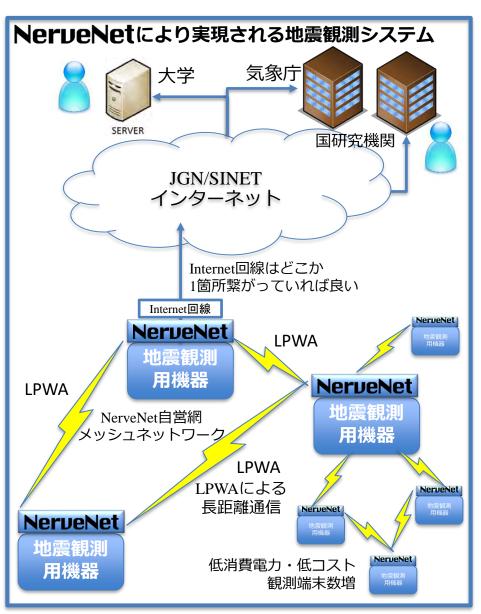
■従来の災害発生直後のオンライン観測技術

衛星通信で観測点展開

設置が大掛かりで大変 消費電力も大きい


保有可能な衛星端末数の関係で**観測点を増やし** にくい

2. 災害発生直後に**FOMA網**で展開


設置箇所・被災の関係で**圏外**も多い

箇所が増えると**待機・ランニングコスト増**

IoTキャラバンシステムを用いた臨時観測

データ回収作業

可搬型NerveNet

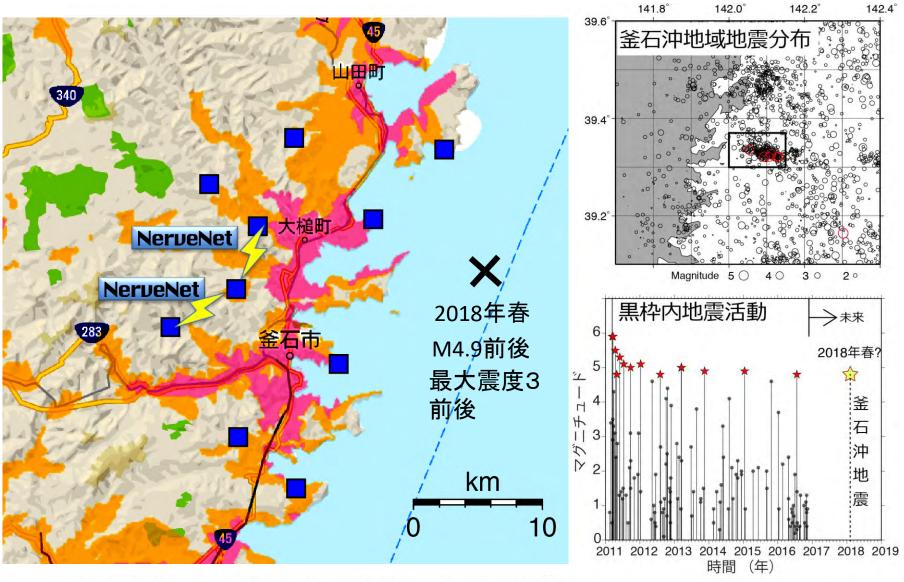
据え置きタイプ

重量: 約6kg

消費電力:100W(最大)

- 防水・防塵, 高信頼性・耐久性
- ・ 高出力で大型の無線機・アンテナ
- 可搬性が重視される用途には適さない

ラズベリーパイタイプ



重量:100g程度

消費電力:7W(最大)

- 信頼性, 耐久性は劣るが 小型, 省電力で軽く, ハードが安い
- 大容量リチウムイオン電池+ソーラーパネルでオフグリッド運用も視野
- •「低速だが長距離の通信」が可能な LoRa を用いて開発中

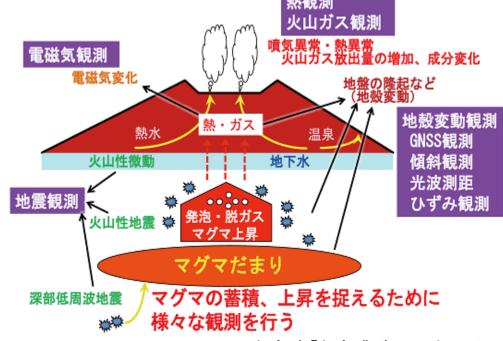
構築中の待ち受け観測網

岩手県釜石市付近に計画中の観測点。背景はFOMAエリア

観測点候補地調査(8/21,22実施)

□予定臨時観測点 ⊙ 既設臨時観測点 ⊕ 定常観測点

今後の展望:全国規模での運用 JDXnet



今後の展望:火山への適用

有事の火山の監視強化 →火山活動推移把握

火山の噴火前には観測網の構築の 時間がある場合も多い。 必要な火山の周りにネットワーク環境 を構築

(場合によっては長期化・噴火に至らない場合も)

目視観測

気象庁「気象業務はいま」から引用

まとめ

(背景)

- 臨時余震観測にIoTキャラバンのニーズがある
- 省電力可搬型NerveNet/LPWAの開発・発展

(現在の検討状況)

- フィールド実証実験を含む広域即時展開型地震 観測システムの研究開発
- キャラバンシステムプロトタイプとして問題点の 洗い出し

(将来)

- 全国合同余震観測への投入
- loTキャラバンシステムの稼働(火山等、多様なアプリケーション)