
Page 1

Autonomous Fast Rerouting
for Software Defined Network

2012.10.29
NTT Network Service System Laboratories,

NTT Corporation

Shohei Kamamura, Akeo Masuda, Koji Sasayama

Page 2

Outline

1. Background and Motivation

2. Requirements for Carrier-grade SDN

3. Problem Statement and our Approach

4. Related Works of IP Fast Rerouting

5. Autonomous Fast Rerouting for SDN (SDN-FRR)

6. Conclusion

Page 3

Background and Motivation

• Recently the main players of the development of networking technologies
seem to be shifting to operators and users of datacenter

• Developers are eager to totally program the operation of not only their
computing equipment, but also the network

• The concept of software defined network (SDN) is expected to release
the network operation from time-consuming tasks such as manual
configuration

– similar to the way of management where the cloud operators program the usage of
computing resources.

Custom Hardware

OS Forwarding

Network OS

APP APP APP

APP APP APP

Page 4

Enabler of SDN

[1]N. McKeown, et al., ``OpenFlow: enabling innovation in campus networks,'' in Proceedings of ACM SIGCOMM Computer Communication, 38(2):69-74, April 2008.

• OpenFlow: Interface between NE and Software-based controller
• Separation of control functions from forwarding hardware

– Forwarding architecture consists of OpenFlow controller and OpenFlow
switches (OFSs).

– The controller computes the routes for each OFS, and each OFS only have to
forward data packets.

• Flow-based routing (switching) using flow table
– Each switch has the forwarding table called flow table, and flow table

consists of match fields, Instructions, and Counters

Match Fields Instructions

DST=10.0.0.0/8
ToS==0

Forward IF #1

DST=10.0.0.0/8
ToS==1

Forward IF #2

Match with (～15)-tupples
Example of flow table

Page 5

Requirements for
Carrier-grade SDN

• The term carrier grade describes a set of functionalities and requirements that
architectures should support in order to fullfill the operational part of network
operators [2]

• The main requirements are (1) Scalability, (2) Reliability, (3) Quality of Service,
and (4) Service Management

Forwarding

Network OS

APP APP APP

[2]D. Staessens, et al., “Software Defined Networking: Meeting Carrier Grade Requirements, “ in Proc. of LANMAN 2011.

Scalability

Reliability

QoS

Service
Management

・Number of Nodes/Links/Ifs
・Number of Flows
・User Addresses

・C/D/M-Plane Reliability
・Fault Management

・Bandwidth
・Delay
・jitter

・Traffic Measurement
・NE Configuration
・User/Flow Management

Page 6

Problem Statement

• We focus on the Reliability for SDN

• As an simple recovery model is implementing “Failure recovery App” on a central
controller

– Transmission delay between the forwarding unit and the central controller

– Reliability depends on not only forwarding unit but also C-Plane (Central controller)

• Our problem is establishing the recovery scheme for SDN, which achieve
carrier-grade fast (sub-50ms) recovery and does not depend on central
controller

Forwarding

Network OS

Failure
Recovery

APP APP

1.Failure Notification

2.Route computation

3. Route Configuration

Simple recovery framework for SDN

Page 7

Approach: Fast Rerouting

• The key idea is embedding autonomy to each forwarding unit
– The goal is realizing fast restoration, which does not require the reactive

update and global convergence, by preconfiguring backup routes

– Even if the central controller or control-plane is down, each node behave
autonomously

– Autonomous actions are performed in controllable range

• Embedding autonomy is realized by pre-configured backup forwarding
table, which is inspired by IP Fast Rerouting

Forwarding

Network OS

APP APP APP Even if Center is down, each
Forwarding unit perform
autonomous routing

Fast rerouting using
pre-configured backup routes

Page 8

Related Works of IP Fast
Rerouting

• Improving IP resilience is classified as reactive and proactive approach

• IP fast rerouting was proposed for improving IP resilience using proactively
configured backup routes such as MPLS protection

• There are many methods for realizing IP fast rerouting
– We focus on the backup topology-based IP fast rerouting, which has both extensibility and

feasibility for actual use

[3]S. Rai, et al., ``IP Resilience within an Autonomous System: Current Approaches, Challenges, and Future Directions,'' in Proceedings of IEEE Communication Magazine 2005.

IP Fast Rerouting

Specific
Forwarding

Extensible/Flexible

Standardized
Forwarding

Limited application

LFA

Not-via
addresses

Backup
Topologies

FIFR

ESCAP

Existing works for IP fast rerouting

Page 9

IP Fast Rerouting using
Backup Topologies

• Backup Topologies are distributed by route server
– Backup routes are precomputed based on backup topologies, which provides

shortest path without protected link.

• Each router forwards the packet according to backup route based on
backup topology by referring to the packet header.

Backup Topology#N

Backup Topology #1

Protected link

Route Server ・Precompute backup routes
Considering possible failure
・Configure the backup routes
to each node

IP Router

Backup Topology #1

Backup Topology #1

Refer to ToS

#1

#1

IP ToS header

・Select backup topology,
Which protects failed
link
・Insert the backup
Topology ID to ToS header

Page 10

IP Fast Rerouting using
Backup Topologies

• An arbitrary single failure is protected at least one backup topology

• For reducing the number of backup topologies, one backup topology protects
multiple links

– the number of backup topologies is proportional to the size of the forwarding table

• To minimize the number of backup topologies, each backup topology is made such
that the topology, excluding the protected links, becomes a spanning tree [4]

network topology backup topology #1

backup topology #2 backup topology #3

Protected link

6 7

1 2 3

8

5 4

6 7

1 2 3

8

5 4

6 7

1 2 3

8

5 4

6 7

1 2 3

8

5 4

[4]S. Kamamura, et al., “Scalable Backup Configuration Creation for IP Fast Reroute,” IEICE Trans. Commun. Vol. E94-B, No-1, Jan. 2011.

Spanning tree

6 7

1 2 3

8

5 4

Page 11

Autonomous Fast Rerouting for
SDN

• We embed the autonomy to SDN framework

• We utilize transparency of forwarding control functions of
OpenFlow

– OpenFlow physically separates its control functions from the node,
and they are provided as programmable area to operators

– As a result, our proposal realizes the user-driven and common
implementation for IP fast rerouting without any extension of OFS.

Page 12

Network model

• There are two types of controllers: a
global controller, which controls the
whole network, and local controllers,
which performs local restoration

• Each local controller is assigned to each
open flow switch, and we regard the set
of OFS and local controller as one node.

• Key features

– ignore the propagation delay between
the global controller and local one, and
online recomputation for restoration

– Simple local restoration does not
depend on the state of global
controller

LC

F

GC

LC

F LC

F
LC

F

LC

F
Local Controller

OFS (OpenFlow Switch)

Configure the forwarding table

of each node

Performs

the local rerouting

Node is composed of

a controller and a forwarding unit

Scope of this
presentation

CC Global Controller

Page 13

Overview of network control

• Central (Global) controller distribute primary routes and backup routes
to each OFS

– Backup routes computed from backup topologies are aggregated, and stored as one
backup table

• When OFS detects an failure, it performs local repairing without the
central controller

LC

F

GC

LC

F LC

F
LC

F

Central
controller

Local
Controller#1

Local
Controller#N OFS#1 OFS#N

Route
computation Route distribution

(Primary and backup)

Failure Detection

Pointer Update

store

store

Page 14

Realization of Fast Rerouting
using OpenFlow (1/2)

• For realizing FRR, we utilize the pipeline processing with multiple flow
tables, which is specified by OpenFlow v1.1

• Before a failure occurrence, entry on a primary flow table indicates the
output interface

• If a failure is detected by the local controller, it modifies the entry of
primary flow table so that it indicates the backup flow table

Table 0 Table 1

OpenFlow Switch

Pointer to output interface

 OpenFlow local controller

OpenFlow

Pointer to

backup table

1. port status 2. modify-state

Packet

In

Packet

Out

3. Switch to backup table

Pointer to

Backup interface

primary backup

Page 15

・Followings are example for applying IP network (IP-FRR)

Realization of Fast Rerouting
using OpenFlow (2/2)

Match fields Instructions

ToS DA

#0 10.0.0.0/8 Forward to IF #1

・
・

・
・

・
・

#1～#63 * Lookup Table1

modify-state

Table 0 (before a failure detection) Table 0 (after a failure)

Match fields Instructions

ToS DA

#1 10.0.0.0/8 Forward to IF #2

#2 10.0.0.0/8 Forward to IF #3

・
・

・
・

・
・

#63 10.0.0.0/8 Forward to IF #3

Table 1 (Backup Table)

Match fields Instructions

ToS DA

#0 10.0.0.0/8 Set ToS = #1
Lookup Table1

・
・

・
・

・
・

#1 #63 Lookup Table1

modify-state

 DA: Destination Address

*: Wild card

Pointer to backup table for relay nodes

•Before a failure occurrence,
Packet “10.0.0.1” is sent through IF#1

•After a failure occurrence,
Controller changes instructions fields;
・change the ToS value
・lookup table1 instead of send to IF#1

•pipeline processing is performed for packet “10.0.0.1”
•Then, packets determine the output interface by
 referring to the table 1.
•On the table 1, output interface is determined by
looking up it with a key composed of ToS value and DA

•For Relaying nodes on the backup route, they should also
forward the packets using backup table
•This is realized by referring to Pointer to backup table.
・Because ToS of packet changes, they do not match primary
entries but match pointer to backup table, and it also refer to
Table 0

Page 16

Overhead of our SDN-FRR

• Though there are no overheads for the restoration time on
the relaying OFS, failure detecting OFS requires the
partial update process for the restoration

• The time for updating one entry is about 146μs [5], the
overhead of restoration time is “146μs x number of
updated entries”

LC

F

LC

F LC

F

LC

F

Switch
from table0 to table1

Use table1
Because of pointer

Use table1
Because of pointer

[5]P. Francois et al., ``Achieving sub-second IGP convergence in large Ipnetworks,'' ACM SIGCOMM Computer Communication Review Volume 35 Issue 3, July 2005

Table 0 Table 1

OpenFlow Switch

Pointer to output interface

 OpenFlow local controller

OpenFlow

Pointer to

backup table

1. port status 2. modify-state

Packet

In

Packet

Out

3. Switch to backup table

Pointer to

Backup interface

primary backup

overhead

Page 17

Example of Numerical Result

• Assuming to apply IP network, we evaluated the restoration time
compared to the current distributed protocol (OSPF)

• Though our FRR architecture requires the partial update process for
the restoration, it is negligible, and it achieves sub-50ms recovery

– There are a small number of affected entries.

Number of Nodes

R
e
c
o
v
e
ry

 T
im

e
 (

m
s
e
c
)

OSPF (full update)

OSPF (partial update)

IP FRR

0

100

200

300

400

500

0 50 100 150 200 250

updatecalcspfdelayspf

floodinglsaodetectospf

TTT

TTTT







Restoration time formulation with OSPF

Restoration time formulation with SDN-FRR

updatedetectfrr TTT 

This is an optimal situation.
In the worst case, RT becomes over n-sec

SDN-FRR can achieve sub-50ms recovery

FRR

Page 18

Conclusion

• Conclusion
– We focus on the problem to realize the carrier-grade reliability for
SDN

• Fast Recovery (sub-50ms) and independency of the C-Plane state

– We embed the autonomy inspired by IP fast rerouting to SDN

– We provides implementation framework of SDN-FRR using OpenFlow,
and can achieve sub-50ms restoration

• Future works
– will implement our IP fast rerouting method for proof of concept

– will develop the recovery optimization framework that uses both local
and global repairing as the situation demands.

Page 19

Backup Slides

Page 20

Simulation Conditions

For the variables calcspfT  and updateT , we measure them

by computer simulation. calcspfT  is equal to the Dijkstra

shortest-path calculation time, whose computation

increases as the square of the number of nodes. For the

updateT , we count the number of entries in the forwarding

table for each router, and it is multiplied by s146 . For

the partial update, we compute the worst case where the

link, which has the most number of flows, fails. Above

simulations are performed in the system with CentOS 5.5,

quad-core Xeon 1.86GHz, and 32GByte memories. For the

fixed value detectT , lsaoT , floodingT , and delayspfT  are set

to fixed values 20ms, 12ms, 33ms and 200ms, respectively.

