Japanese e-VLBI network OCTAVE

National Astronomical Observatory of Japan (NAOJ)
Yusuke Kono
and OCTAVE Team
(JAXA, NICT, GSI, Yamaguchi, Gifu, Tsukuba, Hokkaido Univ.)

Contents

\diamond Radio Astronomy and VLBI
\diamond OCTAVE Network and the Resent Scientific Result
\diamond Future Works

HST (OPTICAL) Harms + 1994

VLBA(Radio Interferometry, $\mathrm{V}_{\mathrm{E}} \mathrm{BI}$)

Key Specification of Telescopes

\diamond Resolution λ / D

$\diamond \lambda$: wavelength
\diamond D: Diameter

VLBI (Very Long Baseline Interferometry)

Resolution of telescopes

Key Specification of Telescopes

\diamond Sensitivity

Recoding rate capability vs time

Whitney 2011

OCTAVE : Optically Connected Array for VLBI Exploration

- SINET4
- JGN-X
- Local Access line

Wideband 10GbE Network

Tomakomai11m

H.U

Key features of OCTAVE

\diamond Broadband
\diamond Weak sources
\diamond Real time (Unique in the world)
\diamond Agile and light operation
\diamond transient/burst radio sources
\diamond survey observations

In scientific operation as an element of JVN (Japanese VLBI network)

An example of science results

\diamond Niinuma +2013

VLBI Observation of Fermi/LAT Un-associated Gamma-ray Sources

- Identify the un-identified v -ray sources using "high sensitivity" VLBI
- search for new v -ray emitting VLBI sources

VLBI observation for Fermi-FoVs

- Obs. Status:
- Date: 2012 Dec 1, 2, 3, 8, 24, total of 70-hrs
- 1-baseline: Yamaguchi - Tsukuba ($\sim 800 \mathrm{~km}$)
- Freq. ($\triangle \mathrm{B}$): 8.4 (0.512) GHz
- Maximum angular resolution: 9 mili-arcsec
- T_int: 3 min (for every sources)
$-\mathrm{S}_{\mathrm{v} \text { _min }}$: $\sim 2 \mathrm{mJy}\left(\mathrm{T}_{\mathrm{B}_{\text {min }}}>3 \times 10^{\wedge} 5\right)$: observations ($\sim 0.8 \mathrm{mJy}\left(\mathrm{T}_{\text {B_min }} \sim 1.4 \times 10^{5}\right)$: calculation)
- Target:
- We conducted observations for 150 un-IDs (= 845 sources which are 70% of all our targets) *all $\delta>=0$ deg sources, and several $\delta<0$ deg sources

Detection of new VLBI sources

new VLBI source within Fermi-FoV

- Total of 27 new VLBI sources
- 17 detections
- 10 marginal detections
- All VLBI sources were found one by one for each un-IDs
- These VLBI sources are
- possible counterpart to each unIDs?
- v-ray emitting blazars?
- Further multi-v VLBI obs. will be planed to know morphology and radio spectra

Future Plans

\diamond Expansion

\diamond Bandwidth

\diamond A/D Convertor
\diamond Network to the world
\diamond Korea and East Asia
\diamond Global

Wideband AD Convertor

\diamond OCTAD (OCTAVE AD)

\diamond 8.192Gsps-2bit (16Gbps) -2ch
\diamond Evaluation test observation
\diamond We need wideband Communication lines.

International connection

\diamond To Korea
\diamond Korea Japan Joint VLBI Correlator at Daejeon
\diamond Center of East Asia VLBI Network

\diamond To Europe
\diamond Noto (Italy) and Yebes (Spain)
\diamond Extremely Long Baseline VLBI
\diamond In Test observation

Summary

\diamond VLBI
\diamond OCTAVE
\diamond Future Plans
\diamond Our VLBI network has been greatly supported by communication society

