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Booth Display & Demonstration

MaSTER-1
— 5-port 10GbE Testbed

e Stream Harmonizer
— Optimizing parallel TCP stream/performance

« Performance optimization of TCP/IP

High speed TCP communication experiments
« CosmoGrid

GRAPE-DR processor chip/system
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MaSTER-1

5-port 10GbE Testbed

MaSTER-1 Overview

*10GbE (LAN PHY) experimental testbed

5 XFP ports connected to FPGAs through MACs

*All FPGAs are connected all-to-all at the speed of 10 Gbps

*FPGAs can be communicated with a control PC thorough a USB port

MaSTER-1 Advantages

*Packets input from a port can be processed at the speed of 10 Gbps
*Packets can be output from any ports

sEach port has powerful configurable FPGA

*Each port has large memories to store packets

MaSTER-1 (12 Layers PCB) MaSTER-1 Applications

Programmable 10GbE switch
Currently running
*Packet Filters
*Packet Logger
*Pseudo Long Fat-pipe Networks
*Maximum 400 ms delay

MaSTER-1  improves the
performance of Parallel TCP
Streams

*Multiple ports allow MaSTER-1 to
handle  multiple  connections
without switches

*MaSTER-1 can observe directly
the packets transmitted by end
hosts

*MaSTER-1  will  clarify  the
problems with the method for
dropping and merging packets in
10GbE switches

* MaSTER-1 is a good tool for
verifying the performance of
parallel TCP streams on Long Fat-
pipe Networks (LFNs)




MaSTER-1

5-port 10GbE Testbhed

MaSTER-1 Specification

Ports 5 XFPs (10GBASE-SR/LR)

Processors 5 FPGAs (Xilinx XC5VFX70T-1FF1136) — 1 for each port
Interconnection All-to-all 10 Gbps — Xilinx Rocket 10

Memory DDR2 SDRAM 2.56 GiB —512 MiB for each processor
1/0 USB 2.0

Dimension 430 mm x 430 mm x 50mm (WDH)

MaSTER-1 Block Diagram

MaSTER-1 FPGA Interconnections
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Stream Harmonizer

NICT

« Inter-cluster data transfer using parallel TCP streams
« Throughput unbalance among streams

« Fairness lost because of slow recovery of flow on LFN
II> Data transfer speed limited by slow streams
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Experimental network to model LFN
« 10 gigabit Ethernet (10GbE)

« Delay emulator
« 150*2 = 300ms round trip time (RTT)
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Throughput of each stream (average of 300ms sections)
« Different packet loss timing at starting phase
« Generating throughput unbalance among streams
« Slow feedback to shrink the throughput difference
« Throughput unbalance preserved

Packet transmission timing at first RTT
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« Packet transmission order preserved among streams
estream0,2,1, 3

« Last stream experiences packet loss first
« switch buffer crowded by the other streams
« packet loss order : stream 3,1, 2, 0
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Packet transmission timing difference

between stream 0 and 3 in each RTT

« Difference increases gradually
« Increased packet gap by the 1GbE bottleneck
* ACK timing preserved in the next RTT

« Initial transmission order preserved
with increased inter-packet gap
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« Throughput unbalance because of different loss timing
E>Synchronizing packet loss timing by shuffling them

Packet queue  Rate control
for each siream  for each stream
P b e

Stream 2 || e=————t—t

at sender gateway
* Per-stream queue

host 1

for each stream

wAN
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host [Stream N

Throughput of each stream (average of 10ms sections)
1200

Sender cluster LAN Stream Harmonizer

Block diagram of network testbed TGNLE-1

« Packet scheduling hardware

« Transmission timing control

Packet scheduling FPGA logic on TGNLE-1

DDR-SDRAM 34Gbps, 2GB
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Evaluating the scheduler using experimental network
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« Synchronized packet loss timing
« Less throughput unbalance among streams
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« Synchronized packet
transmission
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Performance Optimization of TCP/IP

Rapid expansion of Long Fat pipe Network (LFN) all over the world.

10Gbps network interfaces are available for commodity PCs with reasonable price.

Our objectiveis to fully utilize 10Gbps connection with TCP/IP communication.
External bus speed such as 10GbE becomes comparable with internal.

There exist many causes of performance decrease of LFN TCP communication.

Complex of these causes makes situation more complicated.

Mysterious phenomena

e R & Early version of 10GbE NIC uses PCI-X internal bus, less than 8Gbps.
i . ' i ' Version up of NIC with PCl-express (max speed is fullL0Gbs) causes terrible performance
‘% ) [ £ decrease.
: - £
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Performance Optimization of TCP/IP

Packet Pacing (1)

_ e 7 1 ms scale Mipiicaiiol
« Analysis with fine time granularity TONLE-L throughput * Compared and evaluated methods wite(@)
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Internet2 Land Speed Record

o 99% of physical bandwidth for 5 hours on 522ms RTT network
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High-speed TCP communication experiments

Goal Efficient TCP communication on Long Fat pipe Networks
i Slngle. an_d multiple stream T_CP Destination: Faculty of Science, the University of Tokyo
- Adaptive inter-layer cooperation e
- Balancing parallel TCP streams <= W
- Austin(SC08) = the University of Tokyo

Network
- WAN PHY 10 Gbps network
- 9.2 Gbps maximum payload performance
System used
- Intel 1A32 servers with Chelsio S310E network adaptor
- MaSTER TCP stream stabilizer
- TAPEE network instrumentation device
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CosmoGrid

Using 30 processors on Cray XT4 of National Astronomical Observatory of Japan
30 processors of Huygens(IBM Power6 cluster of the University of Amsterdam.

Cosmological N-body calculation with 256”3 particles
The size of the simulation box is 60Mpc (megaparsec), with comoving coordinates and periodic boundary

The specialized calculation code was developed to reduce the required communication bandwidth between two computers

and to allow for large communication latency.

Huygens (Power6) at SARA

Cray XT4 at Tokyo
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GRAPE-DR Processor Chip/System

GRAPE-DR Processor chip

The University of Tokyo
National Astronomical Observatory of Japan

GRAPE-DR supercomputing system(2008)

Specification (2009)

GRAPE-DR compliers
Optimizing compiler for GRAPE-DR

Specification Pipelined program execution Peak Performance: 2Pflops N c parallelization by lobal analvsi
Technology: 90nm CMOS . Pipeli f th ti h . . - utomatic parallelization by global analysis
Number of PEs 512 PEs \I = Ou == exiﬁcu = P ases Number of SING ChIpS 4096 ChIpS - Special purpose optimization for GDR

Number of servers 512 architecture
Peak performance P ¢ i 400KW
i ower Consumption
g;ég;:ops(zlngtl:le) E:,:ellb SR :,::;M . P K o Compiler Ver.1 flat-C compiler 2005)
istribution o PES
. ops(double) in Size 40 Racks Parallel constructs, parallel statements

Size: 18mm X 18mm Explicit description of parallelism
Number of Tr about 400M Tr Interconnect >10 Gbps o Compiler Ver.2 Optimizing C compiler

oS Linux 2.6.x o Currently, a prototype compiler is working

Clock Freq.  500Mz
Power Consumption RG]
MAX 60W

GRAPE-DR

Dense Chip Multi-Processor

Memory on a host | collection of

Idle time 30w results

Floor plan of the chip

Layout of a PE

e ODP module

Module | Color
Name

On chip shared memory [Register [red

Application fields

Highly efficient application fields for GRAPE-DR
- N-body simulation in Astronomy,
- Molecular dynamics MD)
- CFD SPH method, Global model etc.
- Linpack, linear systems
o Application fields with Effective acceleration by
GRAPE-DR

Generate native GRAPE-DR codes

GRAPE-DR system image

>10 Gbps network cards -
GRAPE-DR cardC [P interface for
parallel systems

= GRAPE-DR
Flt-Mulorange - Simulation in nano-technology % "
FIt Add ce - i ion in bio-
PLL & BFT module - t green Simulation in bio-technology (FMO etc) %)
IntALU  blue x Application fields with wide memory accesses 2 —
Processor block . <
2 PEs Local magenta - Classical CFD, FFT 45
Memo. - Application software optimized for vector s
<

others

Processor chip architecture

. SIMD

. 512x64 bit arithmetic units + shared memory
+ broadcast/reduction network

like architecture

Processing Element

processors
x Application fields with network bottlenecks
- Qcp
GRAPE-DR covers about half of important
scientific applications

Our roadmap of supercomputer
FLOPS

1P storage drives (iSCSI disk drives)

Hierarchy of GRAP-DR

- Elimination of inter-PE interconnection ) ) 16
. " X . 512 PE in a chip e
- Dedicated Reduction network (with 16" “Grape DR T d Parallel syst
. . . ,' op-ent arallel system
arithmetic operations) i, PELO3 " p-end Parallelsystem —15ses) 7 o=
B S ./ - .
. Local . S e (K:EISOTU 512 PES/Chip 2K PEs / card
memory R
 Integer operation ; 1z omputer 512 GFlops /Chip  2TFLOPS/card 4 TFLOPS/si
- Floating point i Processing ; Earth 10+PFLOPS”
operation } element)(512) o shared e o \ Il
-Conditional h GonmiSinal) © shared memory SImU'ﬁ[OI'" N
execution 40TFLOP
w» e

memory From shared memory e A >

accesses. L On chip network Registers B Processor chip

Reduction Mask register  Mask write operation of memory by 16 1siGMA-1. Corezxreme

Main memory on setting mask registers YoseHz 2M PEs/ system

A host server m

2PFLOPS/system

70 80 90 2000 20102020 2030 2040 2050 Year

PClexpres
16 lane
10 bus

This research is partially supported by the Special Coordination Fund for Promoting Science and
Technology from Ministry of Education, Culture, Sports, Science and Technology, Japan.
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For more information
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