Link Aggregation for

High Speed Single TCP Stream Transfer
- -

Data Reservoir Project
The University of Tokyo

Kel Hiraki

National Institute of Information and Communications Technology

Our

A

oal

G

TCP/IP single stream communication over
10 Gbps

Important for many scalable applications

Finding solution for very high—-speed TCP
communications

Finding bottlenecks In end-to—end solution
Application to DISK to DISK data transfer
Web systems for over 10G bandwidth

Network Interface for >10

1 ¥4\ ' I\ i I‘— 1

G

40 GE NIC (Mel lanox)

Very expensive
B/W bottleneck at PCI-express (8 lanes)
~32Gbps
Bundle multiple 10Gbps interfaces for
single stream TCP/IP

hne
M

|
NIC NIC
1 1

Server Client
NIC NIC

2 2
| |

| 1nk Agoregation
bbl VbU‘—I

1 111\ 17\ 11

Ageregate multiple NIC for single connection
Load balancing and fault tolerance
Similar to RAID storage

Already widely used —— IEEE 802. 1AX-2008

Single-stream TCP/IP is difficult on
[EEE802. 1AX

Unit of load balancing

1) IP address / MAC Address
2) Based on loads at each NIC

ihk Aocorecation on | 1nii
bb VbU‘—I A\ & B | L= 1 1 IGA /N

b 1 1 1IN 17\ 1 11

bonding Virtual device in Linux
bonding : Link Aggregation on Linux

Model (round-robin Mode)
Equal ly distribute packet by packet
Sender:Transmit equally divided packet to

+wn | i1nke
LWl 1111

Receiver:R?ceive packet fromltwo | Inks then

3 1
4 3 2 1 4 3 2 1

| 4 2 |

Overview

)

Receiver

Performance Problem :Link
Aggregation

O Main Causes of performance decrease
Concentration of loads on specific core
Shuffle of TCP packet sequence
v Heaviness of TCP processing

Our solutio

v Reorder packets before TCP processing

Merge with Receiver side

E][I Interface1 ireien dering

Ell] MAARK TCP/IP
4l2 42 4321 ¥ Processing Application

(Interface2

v Distribute CPU and interrupt affinities

v Modify TCP processing to improve
parallelism

Imblementation Detal !
VIV “ W« 1 LYWV WA 1 |

1nl IHIvVIIl W 11

B Reordering packets

® Reordering packets on stream merging

e Add simple reordering mechanism before TCP
processing

e Avoid heavy load of reordering on TCP
processing

Improve parallelism

Modify TCP processing

Parallelization of TCP receiving process

Separate application / TCP loads into different cores
Distribute CPU and interrupt affinities

Distribute interrupt affinities of NICs

Fix processor affinity mask of application

Evaluation

Compare Linux bonding and our optimized
bonding

Round-robin mode

Systems used

CPU Intel Core i7 940

Motherboard ASUS Rampage Il GENE

Chipset Intel X58 chipset

Memory 6 GB DDR3 SDRAM

NIC Chelsio S310E-CR NIC *2

OS CentOS 5.5 (kernel: linux-2.6.34.7)

E—

| IX bonding device

1 11184 1 [B 1 1A/N\ 11 I

Theoretical Peak Performance:19. 82Gbps

= 2 x 10Gbps X (9190-40) / (9190+26+16)
Measured speed:15. 3Gbps(77% of the peak)

15. 3 Gbps

NIC1 NIC1
Server Client
NIC2 NIC2

Our optimized bonding device
]
- Measured speed: 19. 8Gbps(100% of Theoretical
Peak)
19. 8 Gbps
—

Server ﬁ g‘ Client

B

N
v’

nts at SC10

1 111NV]

Performance measurements on actual LFN
Many complicated situation by actual LFN
Jitters, packet order change

Current performance (778 Gbps /w 171.5 Gbps
back ground traffic in NLR FrameNet:10 Gbps)

We are Improving performance here

“l J

A Receiver H

summary

III IUI

SC10 exper iments are useful to find
problems

Optimized bonding 1s essential to get 40
Gbps single-stream TGP

We thank JGN2plus and NICT for
cooperation of SC10 experiments

