
Link Aggregation for
Hi h S d Si l TCP St T fHigh Speed Single TCP Stream Transfer

Data Reservoir Project
The University of Tokyo

Kei Hiraki

Our GoalOur Goal

 TCP/IP single stream communication over
10 Gbps

 Important for many scalable applications

 Finding solution for very high-speed TCP
communicationscommunications

 Finding bottlenecks in end-to-end solution

A li ti t DISK t DISK d t t f Application to DISK to DISK data transfer

 Web systems for over 10G bandwidth

Network Interface for >10 GbpsNetwork Interface for >10 Gbps

 40 GE NIC (Mellanox)

 Very expensive

 B/W bottleneck at PCI-express (8 lanes)
~32Gbps

 Bundle multiple 10Gbps interfaces for
single stream TCP/IPsingle stream TCP/IP

S

NIC
1

NIC
1

Cli tServer
NIC
2

NIC
2

Client

Link AggregationLink Aggregation

A t lti l NIC f i l ti Aggregate multiple NIC for single connection

 Load balancing and fault tolerance

Si il RAID Similar to RAID storage

 Already widely used --- IEEE 802.1AX-2008

 Single-stream TCP/IP is difficult on
IEEE802.1AX

 Unit of load balancing

 1) IP address / MAC Address

 2) Based on loads at each NIC

Link Aggregation on LinuxLink Aggregation on Linux

 bonding Virtual device in Linux

 bonding : Link Aggregation on Linux

 Mode1 (round-robin Mode)

 Equally distribute packet by packet Equally distribute packet by packet

 Sender：Transmit equally divided packet to
two linkstwo links

 Receiver：Receive packet from two links then
merge 13merge

24

12341234

Link Aggregation on LinuxLink Aggregation on Linux

OverviewOverviewOverviewOverview

ReceiverSender

mergedivide

TCP
Single
Stream 10G x210G x2

Performance Problem :Link
A iAggregation

 Main Causes of performance decrease
 Concentration of loads on specific corep
 Shuffle of TCP packet sequence
 Heaviness of TCP processing Heaviness of TCP processing

Our solutionOur solution

 Reorder packets before TCP processing Reorder packets before TCP processing

 Distribute CPU and interrupt affinities
 Modify TCP processing to improve

parallelism

Implementation DetailImplementation Detail

 Reordering packets
 Reordering packets on stream mergingReordering packets on stream merging

• Add simple reordering mechanism before TCP
processing

• Avoid heavy load of reordering on TCP
processing

Implementation DetailImplementation Detail

 Improve parallelism

 Modify TCP processing
P ll li ti f TCP i i• Parallelization of TCP receiving process

• Separate application / TCP loads into different cores
 Distribute CPU and interrupt affinities Distribute CPU and interrupt affinities
• Distribute interrupt affinities of NICs
• Fix processor affinity mask of application

EvaluationEvaluation

 Compare Linux bonding and our optimized
bonding

 Round-robin mode

 Systems used
CPU Intel Core i7 940
Motherboard ASUS Rampage II GENE
Chipset Intel X58 chipset
Memory 6 GB DDR3 SDRAM
NIC Chelsio S310E-CR NIC *2
OS C tOS 5 5 (k l li 2 6 34 7)OS CentOS 5.5 (kernel: linux-2.6.34.7)

Normal Linux bonding deviceNormal Linux bonding device

 Theoretical Peak Performance：19.82Gbps

≒ 2 × 10Gbps × (9190-40) ∕ (9190+26+16)p () ∕ ()

 Measured speed：15.3Gbps（77% of the peak ）

15.3 Gbps

Server

NIC
1

NIC

NIC1

Client

NIC1

NIC
2

NIC2NIC2

Our optimized bonding deviceOur optimized bonding device

 Measured speed： 19.8Gbps（100% of Theoretical
Peak）

19.8 Gbps

Server

NIC1

NIC2

NIC1

NIC2

Client

NIC2 NIC2

Experiments at SC10Experiments at SC10

 Performance measurements on actual LFN

 Many complicated situation by actual LFN

 Jitters, packet order change

 Current performance (7~8 Gbps /w 1~1.5 Gbps Current performance (7 8 Gbps /w 1 1.5 Gbps
back ground traffic in NLR FrameNet:10 Gbps)

 We are improving performance here

ReceiverSender

merge
divid

e

TCP
Single
Stream

10G10G

ReceiverSender

10G10G
merge

divid
e

TCP
Single
Stream

10G10G

10G10G

SummarySummary

 SC10 experiments are useful to find
problems

 Optimized bonding is essential to get 40 Optimized bonding is essential to get 40
Gbps single-stream TCP

 We thank JGN2plus and NICT for
cooperation of SC10 experiments

