
1

Dynamic and Efficient
Memory Sharing

for Cloud Computing Environments

Eiji Kawai

eiji-ka@nict.go.jp

Motivation

• Aggressive memory usage
for higher performance
– Ex. #1: Data object cache

in distributed computing
environments

– Ex. #2: Advanced page
sharing among virtual hosts

• Conservative memory resource provisioning for stable 
performance
– Memory management is highly virtualized and opaque

• Virtual memory mechanisms (paging in OS)
• Multistage virtualization (paging in VMM)

– Memory shortage causes severe performance degradation 
(slashing)

2Eiji Kawai @ PRAGMA18

Conservative
Memory

Usage

Aggressive
Memory

Usage

3 March 2010



2

Motivation (cont’d)

• More memory is not a perfect solution
– Higher TCO (capital cost, energy cost)

– A possibility of system-wide catastrophe still remains

Eiji Kawai @ PRAGMA18 3

From Barroso and Hölzle, “The Datacenter as a Computer”

3 March 2010

Memory Paging Semantics

• Paging evenly preserves page data in swap when 
the pages are reclaimed

– Data in a virtual memory space should be consistent 
and persistent

• Accesses to swap are highly optimized

– Do not page-out the data consistent with that already 
in a secondary storage (e.g., non-dirty pages, text-area, 
and file system cache)

What can we do further?
Eiji Kawai @ PRAGMA18 43 March 2010



3

Approach

• Relaxing the memory paging semantics
– Define a programming model for a memory area without 

data preservation semantics in the traditional paging 
mechanism
• Data in such pages can be destroyed asynchronously

– An asynchronous memory management mechanism
• In memory shortage, a system can just reclaim pages without 

page-outs 

• Aggressive memory users are forced to change their 
behavior in memory shortage to avoid system-wide 
severe performance penalty

Eiji Kawai @ PRAGMA18 53 March 2010

Related Technique: Weak pointer

• Weak pointer is a reference to a memory area 
which does not affect the behavior of garbage 
collection (GC)
– To access a memory area that is reachable only by a 

weak pointer, a strong pointer must be generated from 
the weak pointer

– Generation of a strong pointer fails if the memory area 
is already collected by GC

• Adopt the semantics of weak pointers into non-GC 
memory management

Eiji Kawai @ PRAGMA18 63 March 2010



4

Implementation

Eiji Kawai @ PRAGMA18 7

• State management and sharing mechanism

Loose consistency model

• Independent memory manager thread

Asynchronous memory management

• Full control of page management and paging activities

Extensions in low-level paging

3 March 2010

State Management

ACTIVE

accesses
permitted
anytime

VALID

accesses
require

declaration

INVALID

accesses
ever

impossible

allocate de-allocate (sync)

suspend

resume

de-allocate 
(sync/async)

8Eiji Kawai @ PRAGMA183 March 2010



5

Modules and Controls

9

U-land

K-land

Application Thread

Library

Memory 
Manager 
Thread

Management
Data

invoke API

syscalls
(alloc/de-alloc)

refer/modify

alloc/de-alloc (sync)

syscalls
(de-alloc)

de-alloc (async)

syscalls
(monitor)

Memory Areas

Eiji Kawai @ PRAGMA183 March 2010

Low-level Paging

• Cannot depend on heap memory
– free() does not always release pages

• Heap is a single continuous area

• Utilizing memory mapping
– Anonymous pages allow explicit allocation and de-

allocation of pages
• mmap() with MAP_ANONYMOUS option

• Some malloc() implementations use mmap() to allocate 
a large area

– Locked pages do not allow paging activities
• Mmap() with MAP_LOCKED option

Eiji Kawai @ PRAGMA18 103 March 2010



6

Application Program Interfaces

• Library Initialization
– Specify a replacement algorithm

• Memory allocation/de-allocation
– Synchronous operations by user programs

• Memory state management
– Explicitly suspend memory usage

• Memory access
– Copy/move/compare/scan/set

• memcpy()/memmove()/memcmp()/memchr()/memset()

– Implicitly resume memory usage
– Direct access with a virtual address is prohibited

• Specify an offset

11Eiji Kawai @ PRAGMA183 March 2010

Conclusion

• Relaxing the memory paging semantics can make aggressive 
and conservative memory usages compatible
– Reducing the risk of system-wide performance catastrophe 

caused by slashing

• Future work
– More consideration on implementation issues

• System interface (system calls)

• Middleware architecture

– Multi-process/Multi-threading fairness issues
• Synchronization among the memory manager threads

– Performance Evaluation
• Micro-benchmarks

12Eiji Kawai @ PRAGMA183 March 2010


